Skip to main content
Темы

(C6) Геометрическая задача повышенной сложности

Задание 1231

Биссектрисы углов $$A$$ и $$B$$ параллелограмма $$ABCD$$ пересекаются в точке $$K$$. Найдите площадь параллелограмма, если $$BC=6$$, а расстояние от точки $$K$$ до стороны $$AB$$ равно $$6$$.

Ответ: 72
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 1550

Боковые стороны $$AB$$ и $$CD$$ трапеции $$ABCD$$ равны соответственно $$24$$ и $$25$$, а основание $$BC$$ равно $$9$$. Биссектриса угла $$ADC$$ проходит через середину стороны $$AB$$. Найдите площадь трапеции.

Ответ: 300
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 1920

В параллелограмме $$ABCD$$ проведена диагональ $$AC$$. Точка $$O$$ является центром окружности, вписанной в треугольник $$ABC$$. Расстояния от точки $$O$$ до точки $$A$$ и прямых $$AD$$ и $$AC$$ соответственно равны $$25$$, $$13$$ и $$7$$. Найдите площадь параллелограмма $$ABCD$$.

Ответ: 1120
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 458

В равнобедренную трапецию, периметр которой равен $$160$$, а площадь равна $$1280$$, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

Ответ: 6,4

Задание 911

В трапеции $$ABCD$$ боковая сторона $$AB$$ перпендикулярна основанию $$BC$$. Окружность проходит через точки $$C$$ и $$D$$ и касается прямой $$AB$$ в точке $$E$$. Найдите расстояние от точки $$E$$ до прямой $$CD$$, если $$AD=4$$, $$BC=2$$.

Ответ: $$2\sqrt{2}$$

Задание 413

В трапеции $$ABCD$$ основания $$AD$$ и $$BC$$ равны соответственно $$34$$ и $$14$$, а сумма углов при основании $$AD$$ равна $$90^{\circ}$$. Найдите радиус окружности, проходящей через точки $$A$$ и $$B$$ и касающейся прямой $$CD$$, если $$AB=12$$.

Ответ: 14,4

Задание 271

В треугольнике $$ABC$$ биссектриса угла $$A$$ делит высоту, проведённую из вершины $$B$$, в отношении $$5:4$$, считая от точки $$B$$. Найдите радиус окружности, описанной около треугольника $$ABC$$, если $$BC=6$$.

Ответ: 5

Задание 2336

В треугольнике $$ABC$$ известны длины сторон $$AB=28$$, $$AC=56$$, точка $$O$$ - центр окружности, описанной около треугольника $$ABC$$. Прямая $$BD$$, перпендикулярная прямой $$AO$$, пересекает сторону $$AC$$ в точке $$D$$. Найдите $$CD$$.

Ответ: 42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 232

На стороне $$BC$$ остроугольного треугольника $$ABC$$ как на диаметре построена полуокружность, пересекающая высоту $$AD$$ в точке $$M$$, $$AD=45$$, $$MD=15$$, $$H$$ - точка пересечения высот треугольника $$ABC$$. Найдите $$AH$$.

Ответ: 40

Задание 739

Окружности радиусов $$36$$ и $$45$$ касаются внешним образом. Точки $$A$$ и $$B$$ лежат на первой окружности, точки $$C$$ и $$D$$ — на второй. При этом $$AC$$ и $$BD$$ — общие касательные окружностей. Найдите расстояние между прямыми $$AB$$ и $$CD$$.

Ответ: 80

Задание 1698

Середина $$M$$ стороны $$AD$$ выпуклого четырёхугольника $$ABCD$$ равноудалена от всех его вершин. Найдите $$AD$$, если $$BC=19$$, а углы $$B$$ и $$C$$ четырёхугольника равны соответственно $$95^{\circ}$$ и $$115^{\circ}$$.

Ответ: $$\frac{38\sqrt{3}}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 1248

Точки $$M$$ и $$N$$ лежат на стороне $$AC$$ треугольника $$ABC$$ на расстояниях соответственно $$9$$ и $$11$$ от вершины $$A$$. Найдите радиус окружности, проходящей через точки $$M$$ и $$A$$ и касающейся луча $$AB$$, если $$\cos \angle BAC=\frac{\sqrt{11}}{6}$$.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 1159

Углы при одном из оснований трапеции равны $$80^{\circ}$$ и $$10^{\circ}$$, а отрезки, соединяющие середины противоположных сторон трапеции, равны $$20$$ и $$17$$. Найдите основания трапеции.

Ответ: 37;3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 1515

Четырёхугольник $$ABCD$$ со сторонами $$AB=11$$ и $$CD=41$$ вписан в окружность. Диагонали $$AC$$ и $$BD$$ пересекаются в точке $$K$$, причём $$\angle AKB=60^{\circ}$$. Найдите радиус окружности, описанной около этого четырёхугольника.

Ответ: $$\sqrt{751}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!