Комбинация многоугольников и окружностей
Задание 2336
В треугольнике $$ABC$$ известны длины сторон $$AB=28$$, $$AC=56$$, точка $$O$$ - центр окружности, описанной около треугольника $$ABC$$. Прямая $$BD$$, перпендикулярная прямой $$AO$$, пересекает сторону $$AC$$ в точке $$D$$. Найдите $$CD$$.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 1248
Точки $$M$$ и $$N$$ лежат на стороне $$AC$$ треугольника $$ABC$$ на расстояниях соответственно $$9$$ и $$11$$ от вершины $$A$$. Найдите радиус окружности, проходящей через точки $$M$$ и $$A$$ и касающейся луча $$AB$$, если $$\cos \angle BAC=\frac{\sqrt{11}}{6}$$.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 1515
Четырёхугольник $$ABCD$$ со сторонами $$AB=11$$ и $$CD=41$$ вписан в окружность. Диагонали $$AC$$ и $$BD$$ пересекаются в точке $$K$$, причём $$\angle AKB=60^{\circ}$$. Найдите радиус окружности, описанной около этого четырёхугольника.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!