ОГЭ 2021. Вариант 1. Ященко 36 вариантов ФИПИ школе.
Решаем 1 вариант ОГЭ Ященко 2021 года сборника ФИПИ школе 36 вариантов. Полный разбор всего 1 варианта (всех заданий).
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 1-5
Зонты
Два друга Петя и Вася задумались о том, как рассчитать площадь поверхности зонта. На первый взгляд зонт кажется круглым, а его купол напоминает часть сферы (сферический сегмент). Но если присмотреться, то видно, что купол зонта состоит из восьми отдельных клиньев, натянутых на каркас из восьми спиц (рис. 1). Сферическая форма в раскрытом состоянии достигается за счёт гибкости спиц и эластичности ткани, из которой изготовлен зонт. Петя и Вася сумели измерить расстояние между концами соседних спиц $$a$$. Оно оказалось равно $$38$$ см. Высота купола зонта $$h$$ (рис. 2) оказалась равна $$25$$ см, а расстояние $$d$$ между концами спиц, образующих дугу окружности, проходящей через вершину зонта, — ровно $$100$$ см.
1. Длина зонта в сложенном виде равна $$25$$ см и складывается из длины ручки (рис. 3) и трети длины спицы (зонт в три сложения). Найдите длину спицы, если длина ручки зонта равна $$6,2$$ см.
2. Поскольку зонт сшит из треугольников, рассуждал Петя, площадь его поверхности можно найти как сумму площадей треугольников. Вычислите площадь поверхности зонта методом Пети, если высота каждого равнобедренного треугольника, проведённая к основанию, равна $$53,1$$ см. Ответ дайте в квадратных сантиметрах с округлением до десятков.
3. Вася предположил, что купол зонта имеет форму сферического сегмента. Вычислите радиус $$R$$ сферы купола, зная, что $$OC = R$$ (рис. 2). Ответ дайте в сантиметрах.
4. Вася нашёл площадь купола зонта как площадь поверхности сферического сегмента по формуле $$S = 2\pi Rh$$, где $$R$$ — радиус сферы, a $$h$$ — высота сегмента. Рассчитайте площадь поверхности купола способом Васи. Число $$\pi$$ округлите до $$3,14$$. Ответ дайте в квадратных сантиметрах с округлением до целого.
5. Рулон ткани имеет длину $$35$$ м и ширину $$80$$ см. На фабрике из этого рулона были вырезаны треугольные клинья для $$29$$ зонтов, таких же, как зонт, который был у Пети и Васи. Каждый треугольник с учётом припуска на швы имеет площадь $$1050$$ кв. см. Оставшаяся ткань пошла в обрезки. Сколько процентов ткани рулона пошло в обрезки?
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
1) Длина $$\frac{1}{3}$$ спицы: $$25-6,2=18,8$$ см. Тогда длина всей спины: $$3*18,8=56,4$$ см
2) Площадь одного треугольника $$S_1=\frac{1}{2} \cdot 38 \cdot 53,1=1008,9$$ см$$^{2}$$. Тогда площадь поверхности зонта: $$S_2=1008,9\cdot 8=8071,2$$ см$$^{2}$$.
3) Пусть x - высота равнобедреннего треугольника OMN. Тогда $$HN=50; ON=25+x.$$ По теореме Пифагора: $$x^{2}+2500=x^{2}+50x+625\to x=37,5\to R=37,5+25=62,5$$ см.
4) $$S=2\cdot 3,14\cdot 62,5\cdot 25=9812,5$$ см$$^{2}$$ $$\approx 9813$$ см$$^{2}$$.
5) Ушло на треугольники: $$29\cdot 8=1050=243600$$ см$$^{2}$$ $$=\frac{243600}{100\cdot 100}$$ м$$^{2}$$ $$=24,36$$ м$$^{2}$$. Площадь рулона: $$35\cdot 0,8=28$$ м$$^{2}$$ В обрезки пошло: $$\frac{28-24,36}{28}=100=13%$$
Задание 7
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 8
Найдите значение выражения $$\frac{(a^4)^{-3}}{a^{-15}}$$ при $$a = 2$$.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 9
Найдите корень уравнения: $$(x + 10)^2 = (5 - x)^2$$
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
$$(x+10)^2=(5-x)^2$$
Получим два уравнения:
1) $$x+10=5-x\to 2x=-5$$
2) $$x+10=x-5\to 10=-5$$
Значит ответ: $$x=-2,5$$
Задание 10
В магазине канцтоваров продаётся $$200$$ ручек: $$31$$ — красная, $$25$$ — зелёных, $$38$$ — фиолетовых, остальные — синие и чёрные, их поровну. Найдите вероятность того, что случайно выбранная в этом магазине ручка будет красной или чёрной.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 11
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Найдем абсциссу вершины для каждой функции:
1) $$x_0=-\frac{-28}{(-4)\cdot 2}=-3,5\to$$ Б
2) $$x_0=-\frac{-28}{4\cdot 2}=3,5,a>0\to$$ ветви вверх $$\to$$ А
3) $$x_0=-\frac{28}{(-4)\cdot 2}=3,5\to$$ В
Задание 12
Центростремительное ускорение при движении по окружности (в м/с²) вычисляется по формуле $$a = \omega^2 R$$, где $$\omega$$ — угловая скорость (в с⁻¹), $$R$$ — радиус окружности (в метрах). Пользуясь этой формулой, найдите радиус $$R$$, если угловая скорость равна $$9$$ с⁻¹, а центростремительное ускорение равно $$243$$ м/с². Ответ дайте в метрах.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 13
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 14
В течение $$20$$ банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в $$9$$-й день акция стоила $$888$$ рублей, а в $$13$$-й день — $$940$$ рублей?
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 15
Сторона треугольника равна $$29$$, а высота, проведённая к этой стороне, равна $$12$$. Найдите площадь этого треугольника.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 16
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 17
Диагональ прямоугольника образует угол $$47^\circ$$ с одной из его сторон. Найдите острый угол между диагоналями этого прямоугольника.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 18
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 19
Какие из следующих утверждений верны?
- Основания любой трапеции параллельны.
- Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
- Все углы ромба равны.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
1) верно
2) верно
3) нет (противоположные равны)
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
$$x^6=-(12-8x)^3\leftrightarrow x^2=-(12-8x)\leftrightarrow x^2-8x+12=0$$
По теореме Виета:
1) $$x_1+x_2=8\to x_1=2$$
2) $$x_1\cdot x_2=12\to x_2=6$$
Задание 21
Два велосипедиста одновременно отправляются в $$208$$ - километровый пробег. Первый едет со скоростью на $$3$$ км/ч большей, чем второй, и прибывает к финишу на $$3$$ часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу первым.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Пусть $$x$$ км/ч - скорость быстрого, тогда $$x-3$$ - скорость медленного. Тогда $$\frac{208}{x-3}-\frac{208}{x}=3\leftrightarrow 208x-208x+208\cdot 3=3x(x-3)\to$$ $$\to x^2-3x-208=0\leftrightarrow D=29^2$$
Получим два корня: $$x_1=\frac{3+2}{2}=16; x_2<0$$. Значит ответ: 16.
Задание 22
Постройте график функции $$y = x^2 - 4|x| - x$$ и определите, при каких значениях $$m$$ прямая $$y = m$$ имеет с графиком не менее одной, но не более трёх общих точек.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
$$у = х^2 - 4|х| - х$$ из этого получим два уравнения:
1) $$x_0=-\frac{-5}{2}=2,5; y_0=2,5^2-5\cdot 2,5=-6,25, x_1=0; x_2=5$$
2) $$x_0=\frac{-3}{2}=-1,5; y_0=(-1,5)^2+3\cdot (-1,5)=-2,25, x_1=0; x_2=-3$$
Построим график функции.
от 1 до 3 точек при $$m\in [-6,25;-2,25]\cup [0;+\infty)$$
Задание 23
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $$6:13:17$$. Найдите радиус окружности, если меньшая из сторон равна $$18$$.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 24
Основания $$BC$$ и $$AD$$ трапеции $$ABCD$$ равны соответственно $$5$$ и $$45$$, $$BD=15$$. Докажите, что треугольники $$CBD$$ и $$BDA$$ подобны.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
1)$$\angle CBD=\angle BDA$$ (накрест лежащие при $$BC\parallel AD$$)
2) Рассмотрим $$\triangle BCD$$ и $$\triangle BDA$$ (в числителе сторона $$\triangle BCD$$, в знаменателе $$\triangle BDA$$): $$\frac{BC}{BD}=\frac{5}{15}=\frac{1}{3}; \frac{BD}{AD}=\frac{15}{45}=\frac{1}{3}\to \frac{BC}{BD}=\frac{BD}{AD}$$. С учетом 1 пункта: $$\triangle BCD\approx \triangle BDA$$







