Skip to main content

ОГЭ 2022. Вариант 25 Ященко 36 вариантов ФИПИ школе.

Решаем 25 вариант ОГЭ Ященко 2022 года сборника ФИПИ школе 36 вариантов. Полный разбор всего 25 варианта (всех заданий).

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 1-5

План местности

Ваня летом отдыхает у дедушки и бабушки в деревне Николаевке. Ваня с дедушкой собираются съездить на велосипедах в село Игнатьево на железнодорожную станцию. Из Николаевки в Игнатьево можно проехать по шоссе до деревни Сосновки, где нужно свернуть под прямым углом направо на другое шоссе, ведущее в Игнатьево через посёлок Дачный. Из Николаевки в Игнатьево можно проехать через посёлок Дачный и не заезжая в Сосновку, но тогда первую часть пути надо будет ехать по прямой лесной дорожке. Есть и третий маршрут: доехать по прямой тропинке мимо озера до деревни Кулички и там, повернув налево, по шоссе добраться до Игнатьево. По шоссе Ваня с дедушкой едут со скоростью 20 км/ч, а по лесной дорожке и тропинке — 15 км/ч. Расстояние по шоссе от Николаевки до Сосновки равно 15 км, от Игнатьево до Сосновки — 24 км, от Игнатьево до Дачного — 16 км, а от Игнатьево до Куличек — 8 км.

1. Пользуясь описанием, определите, какими цифрами на плане обозначены населённые пункты. В ответ запишите полученную последовательность пяти цифр.

Насел. пункты д. Николаевка с. Игнатьево д. Сосновка п. Дачный д. Кулички
Цифры          

2. На сколько процентов скорость, с которой едут Ваня с дедушкой по тропинке, меньше их скорости по шоссе?

3. Найдите расстояние от деревни Николаевки до посёлка Дачного по лесной дорожке. Ответ дайте в километрах.

4. Сколько минут затратят на дорогу Ваня с дедушкой, если поедут на станцию через Сосновку?

5. Определите, на какой маршрут до станции потребуется меньше всего времени. В ответе укажите, сколько минут потратят на дорогу Ваня с дедушкой, если поедут этим маршрутом.

Ответ: 1)51432 2)25 3)17 4)117 5)116
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 6

Найдите значение выражения $$\frac{0,8}{1-\frac{1}{9}}$$

Ответ: 0,9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7

Какое из следующих чисел заключено между числами $$\frac{4}{11}$$ и $$\frac{7}{17}$$?
1) $$0,2$$
2) $$0,3$$
3) $$0,4$$
4) $$0,5$$

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8

Найдите значение выражения $$\frac{4^9}{64^2}$$.

Ответ: 64
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 9

Решите уравнение: $$(5x - 2)( -x + 3) = 0$$. Если уравнение имеет более одного корня, в ответ запишите меньший из корней.

Ответ: 0,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Произведение на допустимых значениях переменной равно нулю, когда хотя бы один из множителей равен нулю. Получим:

$$5x-2=0\Rightarrow 5x=2\Rightarrow x=\frac{2}{5}=0,4$$

или

$$-x+3=0\Rightarrow -x=-3\Rightarrow x=\frac{-3}{-1}=3$$

Меньший их корней равен $$0,4$$

Задание 10

В группе туристов $$8$$ человек. С помощью жребия они выбирают трёх человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин?

Ответ: 0,375
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 11

Установите соответствие между формулами, которыми заданы функции, и графиками этих функций.

ГРАФИКИ

Формулы:
А) $$y = -x^2 + 2x + 4$$
Б) $$y = x^2 - 2x - 4$$
В) $$y = -x^2 - 2x + 4$$

А Б В
     
Ответ: 123
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 12

Теорему синусов можно записать в виде $$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$, где $$a$$ и $$b$$ — две стороны треугольника, а $$\alpha$$ и $$\beta$$ — углы треугольника, лежащие против этих сторон соответственно. Пользуясь этой формулой, найдите $$a$$, если $$b = 6$$, $$\sin \alpha = \frac{1}{12}$$, $$\sin \beta = \frac{1}{8}$$.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 13

Укажите решение неравенства: $$x^2 - 49 \ge 0$$
1) $$[ -7;\ 7 ]$$
2) нет решений
3) $$( -\infty;\ -7 ] \cup [ 7;\ +\infty )$$
4) $$( -\infty;\ +\infty )$$

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 14

К концу $$2009$$ года в городе проживало $$53\ 100$$ человек. Каждый год число жителей города возрастало на одну и ту же величину. В конце $$2018$$ года в городе проживало $$60\ 390$$ человек. Какова была численность населения этого города к концу $$2015$$ года?

Ответ: 57960
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 15

Точки $$M$$ и $$N$$ являются серединами сторон $$AB$$ и $$BC$$ треугольника $$ABC$$, сторона $$AB = 73$$, сторона $$BC = 31$$, сторона $$AC = 42$$. Найдите $$MN$$.

Ответ: 21
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 16

Угол $$A$$ трапеции $$ABCD$$ с основаниями $$AB$$ и $$BC$$, вписанной в окружность, равен $$77^\circ$$. Найдите угол $$C$$ этой трапеции. Ответ дайте в градусах.

Ответ: 103
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 17

В ромбе $$ABCD$$ угол $$ABC$$ равен $$68^\circ$$. Найдите угол $$ACD$$. Ответ дайте в градусах.

Ответ: 56
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 18

На клетчатой бумаге с размером клетки $$1 \times 1$$ изображён треугольник. Найдите его площадь.

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 19

Какие из следующих утверждений верны?

  1. Диагональ параллелограмма делит его на два равных треугольника.
  2. Все углы ромба равны.
  3. Площадь квадрата равна произведению двух его смежных сторон.

В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

Ответ: 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 20

Найдите значение выражения: $$41a - b + 45$$, если $$\frac{a - 6b + 5}{6a - b + 5} = 7$$

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

По условию $$\frac{a-6b+5}{6a-b+5}=7$$.

Умножим обе части равенства на $$6a-b+5$$: $$a-6b+5=7(6a-b+5).$$

Раскроем скобки и перенесём всё в одну часть: $$0=42a-7b+35-(a-6b+5)=41a-b+30,$$ откуда $$41a-b+30=0.$$ Тогда $$41a-b=-30.$$

Прибавим к обеим частям равенства $$45$$: $$41a-b+45=-30+45=15.$$ Следовательно, значение выражения $$41a-b+45$$ равно $$15$$.

Ответ: $$15$$.

Задание 21

Шесть одинаковых рубашек дешевле куртки на $$8 \%$$. На сколько процентов девять таких же рубашек дороже куртки?

Ответ: 38
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 22

Постройте график функции $$y = \frac{(x^2 + 0{,}25)(x + 1)}{-1 - x}$$ и определите, при каких значениях $$k$$ прямая $$y = kx$$ имеет с графиком ровно одну общую точку.

Ответ: -1; 1; 1,25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 23

Биссектриса угла $$A$$ параллелограмма $$ABCD$$ пересекает сторону $$BC$$ в точке $$K$$. Найдите периметр параллелограмма, если $$BK=10$$, $$CK=18$$.

Ответ: 76
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

AD = BC = BK + KC = 10+18 = 28
∠KAD =∠BKA (накрестлежащие)
∠BAK =∠KAD (AK - биссектриса)
Значит ∠BKA=∠BAK, треугольник ABK равнобедренный и AB=BK=10, CD=AB=10
P=28*2+10*2=56+20=76

Задание 24

Окружности с центрами в точках $$E$$ и $$F$$ пересекаются в точках $$C$$ и $$D$$, причём точки $$E$$ и $$F$$ лежат по одну сторону от прямой $$CD$$. Докажите, что $$CD\perp EF$$ .

Ответ: ч.т.д.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть $$CD\cup EF=M$$; $$EC=ED$$ (радиусы) $$\Rightarrow$$ $$\bigtriangleup ECD$$ - равнобедренный. $$CF=FD$$ (радиусы) $$\Rightarrow$$ $$\bigtriangleup CFD$$ - равнобедренный

2) из 1 и общий $$EF$$ $$\bigtriangleup ECF=\bigtriangleup EDF$$ $$\Rightarrow$$ $$\angle CFE=\angle DFE$$ $$\Rightarrow$$ $$FM$$ - бисекрисса, но тогда она и высота $$\Rightarrow$$ $$CD\perp EF$$

Задание 25

В треугольнике $$ABC$$ биссектриса $$BE$$ и медиана $$AD$$ перпендикулярны и имеют одинаковую длину, равную $$96$$. Найдите стороны треугольника $$ABC$$.

Ответ: