Задание 2359
Задание 2359
Теорему синусов можно записать в виде $$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$, где $$a$$ и $$b$$ — две стороны треугольника, а $$\alpha$$ и $$\beta$$ — углы треугольника, лежащие против этих сторон соответственно. Пользуясь этой формулой, найдите $$a$$, если $$b = 6$$, $$\sin \alpha = \frac{1}{12}$$, $$\sin \beta = \frac{1}{8}$$.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Аналоги к этому заданию:
Задание 198
Теорему синусов можно записать в виде $$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$, где $$a$$ и $$b$$ — две стороны треугольника, а $$\alpha$$ и $$\beta$$ — углы треугольника, лежащие против этих сторон соответственно. Пользуясь этой формулой, найдите $$a$$, если $$b = 24$$, $$\sin \alpha = \frac{1}{12}$$, $$\sin \beta = \frac{1}{7}$$.
Задание 135
Теорему синусов можно записать в виде $$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$, где $$a$$ и $$b$$ — две стороны треугольника, а $$\alpha$$ и $$\beta$$ — углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите $$a$$, если $$b = 24$$, $$\sin \alpha = 0,3$$ и $$\sin \beta = 0,5$$.
Подставим известные значения в формулу:
$$\frac{a}{0,3} = \frac{24}{0,5}$$
$$\frac{a}{0,3} = 48$$
$$a = 48 \cdot 0,3 = 14,4$$