Skip to main content

Задание 2359

Задание 2359

Теорему синусов можно записать в виде $$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$, где $$a$$ и $$b$$ — две стороны треугольника, а $$\alpha$$ и $$\beta$$ — углы треугольника, лежащие против этих сторон соответственно. Пользуясь этой формулой, найдите $$a$$, если $$b = 6$$, $$\sin \alpha = \frac{1}{12}$$, $$\sin \beta = \frac{1}{8}$$.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Аналоги к этому заданию:

Задание 198

Теорему синусов можно записать в виде $$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$, где $$a$$ и $$b$$ — две стороны треугольника, а $$\alpha$$ и $$\beta$$ — углы треугольника, лежащие против этих сторон соответственно. Пользуясь этой формулой, найдите $$a$$, если $$b = 24$$, $$\sin \alpha = \frac{1}{12}$$, $$\sin \beta = \frac{1}{7}$$.

Ответ:

Задание 135

Теорему синусов можно записать в виде $$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$, где $$a$$ и $$b$$ — две стороны треугольника, а $$\alpha$$ и $$\beta$$ — углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите $$a$$, если $$b = 24$$, $$\sin \alpha = 0,3$$ и $$\sin \beta = 0,5$$.

Ответ: 14,4
Скрыть

Подставим известные значения в формулу:

$$\frac{a}{0,3} = \frac{24}{0,5}$$

$$\frac{a}{0,3} = 48$$

$$a = 48 \cdot 0,3 = 14,4$$