Skip to main content
Темы

ОГЭ / Задачи с кругами и окружностями

Задание 2479

В окружности с центром $$O$$ отрезки $$AC$$ и $$BD$$ — диаметры. Угол $$AOD$$ равен $$108^\circ$$. Найдите угол $$ACB$$. Ответ дайте в градусах.

Ответ: 36
Скрыть

Так как АС и BD — диаметры, то дуги AD=BC и AB=CD. Найдем градусную меру дуги AB, на которую опирается вписанный угол ACB. Так как угол AOD = 108°, то градусная мера дуги AD = 108° и тогда градусная мера: 

$$AB=\frac{360^{\circ}-AD-BC}{2}=$$$$\frac{360^{\circ}-2\cdot 108^{\circ}}{2}=72^{\circ}$$

Так как угол ACB является вписанным, то он равен половине градусной меры дуги, на которую опирается, то есть:

$$\angle ACB=\frac{AB}{2}=\frac{72^{\circ}}{2}=36^{\circ}$$

Задание 4240

В треугольнике $$ABC$$ $$AC = 3\sqrt{7}$$, $$BC = 3\sqrt{2}$$, угол $$C$$ равен $$90^\circ$$. Найдите радиус окружности, описанной около этого треугольника.

Ответ: 4,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Радиус описанной вокруг прямоугольного треугольника окружности равен половине длины его гипотенузы. Найдем гипотенузу по теореме Пифагора: $$AB=\sqrt{AC^{2}+BC^{2}}=\sqrt{9*7+9*2}=9$$ В таком случае радиус будет равен 9/2 = 4,5

Задание 3272

На окружности по разные стороны от диаметра $$AB$$ взяты точки $$M$$ и $$N$$. Известно, что $$\angle NBA = 48^\circ$$. Найдите угол $$NMB$$. Ответ дайте в градусах.

Ответ: 42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\smile AB=180=\smile AN+\smile NB$$

$$\smile AN=2\angle NBA=96$$

$$\smile NB=180-96=84$$

$$\angle NMB=\frac{\smile NB}{2}=\frac{84}{2}=42$$

Задание 814

Найдите площадь квадрата, описанного около окружности радиуса $$25$$.

Ответ: 2500
Скрыть

Пусть R - радиус и D - диаметр окружности, a - сторона квадрата. Сторона квадрата равна диаметру вписанной окружности. Найдём площадь квадрата:

$$S=D^2=(2R)^2=(2\cdot25)^2=2500$$

Задание 2499

Отрезки $$AC$$ и $$BD$$ — диаметры окружности с центром $$O$$. Угол $$ACB$$ равен $$53^\circ$$. Найдите угол $$AOD$$. Ответ дайте в градусах.

Ответ: 74
Скрыть
Треугольник BOC - равнобедренный (OB и OC - радиусы окружности), тогда $$\angle OBC=53^{\circ}\Rightarrow$$$$\angle BOC=180-53\cdot 2=74$$ Но углы BOC и AOD - вертикальны, следовательно, равны

Задание 2210

Радиус окружности, вписанной в трапецию, равен $$12$$. Найдите высоту этой трапеции.

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 1557

Радиус окружности, описанной около равностороннего треугольника, равен $$12$$. Найдите высоту этого треугольника.

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 338

Радиус окружности, описанной около равностороннего треугольника, равен $$6\sqrt{3}$$. Найдите длину стороны этого треугольника.

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 380

Трапеция $$ABCD$$ с основаниями $$AD$$ и $$BC$$ описана около окружности, $$AB = 15$$, $$BC = 20$$, $$CD = 17$$. Найдите $$AD$$.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 4242

Треугольник $$ABC$$ вписан в окружность с центром в точке $$O$$. Точки $$O$$ и $$C$$ лежат в одной полуплоскости относительно прямой $$AB$$. Найдите угол $$ACB$$, если угол $$AOB$$ равен $$152^\circ$$. Ответ дайте в градусах.

Ответ: 76
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Введем обозначения как показано на рисунке:

Угол AOB - центральный, значит его величина равна величине дуги на которую он опирается, то есть дуга AB = 152. Угол С - вписанный, его величина равна половине величины, на которую он опирается, то есть половину AB: 152/2=76

Задание 2356

Угол $$A$$ трапеции $$ABCD$$ с основаниями $$AB$$ и $$BC$$, вписанной в окружность, равен $$77^\circ$$. Найдите угол $$C$$ этой трапеции. Ответ дайте в градусах.

Ответ: 103
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 931

Угол $$A$$ трапеции $$ABCD$$ с основаниями $$AD$$ и $$BC$$, вписанной в окружность, равен $$83^\circ$$. Найдите угол $$B$$ этой трапеции. Ответ дайте в градусах.

Ответ: 97
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 571

Угол $$A$$ четырёхугольника $$ABCD$$, вписанного в окружность, равен $$78^\circ$$. Найдите угол $$C$$ этого четырёхугольника. Ответ дайте в градусах.

Ответ: 102

Задание 2063

Центр окружности, описанной около треугольника $$ABC$$, лежит на стороне $$AB$$. Найдите угол $$ABC$$, если угол $$BAC$$ равен $$44^\circ$$. Ответ дайте в градусах.

Ответ: 46

Задание 2324

Центр окружности, описанной около треугольника $$ABC$$, лежит на стороне $$AB$$. Радиус окружности равен $$17$$. Найдите $$AC$$, если $$BC = 30$$.

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

 

1) $$AB$$ - диаметр $$\Rightarrow AB=2 \cdot 17=34$$.

2) $$\angle ACB=90^{\circ}$$ (вписанный угол, опирается на диаметр)

3) $$A C=\sqrt{AB^2-BC^2}=\sqrt{34^2-30^2}=\sqrt{4 \cdot 64}=16$$(по т. Пифагора)