Skip to main content
Темы
(C5) Геометрическая задача на доказательство

Окружности и их элементы

Задание 352

Окружности с центрами в точках $$M$$ и $$N$$ пересекаются в точках $$S$$ и $$T$$, причём точки $$M$$ и $$N$$ лежат по одну сторону от прямой $$ST$$. Докажите, что прямые $$MN$$ и $$ST$$ перпендикулярны.

Ответ: ч.т.д.

Задание 723

Окружности с центрами в точках $$P$$ и $$Q$$ не имеют общих точек, и ни одна из них не лежит внутри другой. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении $$m:n$$. Докажите, что диаметры этих окружностей относятся как $$m:n$$.

Ответ: ч.т.д.