Текстовые задачи
Задачи на совместную работу
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 2025
Первая труба пропускает на $$8$$ литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом $$180$$ литров она заполняет на $$8$$ минут дольше, чем вторая труба?
Ответ: 10
Скрыть
Пропускную способность первой трубы обозначим через $$x$$. Тогда вторая труба будет пропускать $$x+8$$ литров воды. Время заполнения объема в 180 литров первой трубы составляет $$\frac{180}{x}$$, а тот же объем для второй трубы $$\frac{180}{x+8}$$. По условию задачи сказано, что вторая труба заполняет данный объем на 8 минут быстрее первой. Получаем уравнение $$\frac{180}{x}-\frac{180}{x+8}=8$$ откуда имеем:
$$180\left(x+8\right)-180x-8\left(x^2+8x\right)=0\to 8x^2+64x-180\cdot 8=0\to$$ $$\to x^2+8x-180=0. $$
Решаем квадратное уравнение, получаем корни $$x_1=10,\ x_2=-18$$.
Так как отрицательного значения быть не может, остается одно значение $$x=10$$.