Skip to main content

Задание 775

Задание 775

В окружности через середину $$O$$ хорды $$BD$$ проведена хорда $$AC$$ так, что дуги $$AB$$ и $$CD$$ равны. Докажите, что $$O$$ — середина хорды $$AC$$.

Ответ: -
Скрыть

Вписанные углы ADB, CBD, ACB и DAC опираются на равные дуги, значит, они равны.

Получаем, что треугольники СOВ и AOD подобны по двум углам; их коэффициент подобия равен $$\frac{AO}{OC}$$

Поскольку AO = OC, эти треугольники равны, следовательно, AO = OC.

Аналоги к этому заданию:

Задание 3663

В окружности через середину $$O$$ хорды $$AC$$ проведена хорда $$BD$$ так, что дуги $$AB$$ и $$CD$$ равны. Докажите, что $$O$$ — середина хорды $$BD$$.

Ответ: $$OB=OD$$
Скрыть

1) $$\angle BAC=\angle BDC$$ (вписанные и опираются на одну дугу)

2) $$AB=CD$$ (т.к. $$\smile AB=\smile CD$$); $$OA=OC$$ $$\Rightarrow$$ $$\bigtriangleup OAB=\bigtriangleup COD$$ (по двум сторонам и углу между ними) $$\Rightarrow$$ $$OB=OD$$