Задание 541
Аналоги к этому заданию:
Задание 102
Точка $$K$$ — середина боковой стороны $$CD$$ трапеции $$ABCD$$, а $$AK = BK$$. Докажите, что трапеция $$ABCD$$ прямоугольная.
1) Пусть $$KH$$ - высота в треугольнике $$ABK$$, Тогда $$KH \perp AB$$.
2) Так как $$BK = AK$$, то треугольник $$ABK$$ - равнобедренный, тогда $$KH$$ - медиана. То есть $$H$$ - середина $$AB$$.
3) Тогда $$KH$$ - средняя линия трапеции $$ABCD$$, и $$KH \parallel AD \parallel BC$$.
4) Следовательно, $$BC\perp AB$$ и $$AD\perp AB$$, то есть трапеция - прямоугольная.
Задание 123
Точка $$E$$ — середина боковой стороны $$AB$$ трапеции $$ABCD$$, а $$EC = ED$$. Докажите, что трапеция $$ABCD$$ прямоугольная.
1) Пусть $$EH$$ - высота в треугольнике $$ECD$$, Тогда $$EH \perp CD$$.
2) Так как $$EC = ED$$, то треугольник $$ECD$$ - равнобедренный, тогда $$EH$$ - медиана. То есть $$H$$ - середина $$CD$$.
3) Тогда $$EH$$ - средняя линия трапеции $$ABCD$$, и $$EH \parallel AD \parallel BC$$.
4) Следовательно, $$BC\perp CD$$ и $$AD\perp CB$$, то есть трапеция - прямоугольная.