Задание 4593
Задание 4593
Два велосипедиста одновременно отправились в $$60$$ - километровый пробег. Первый ехал со скоростью, на $$10$$ км/ч большей, чем скорость второго, и прибыл к финишу на $$3$$ час раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч.
Путь х км/ч - скорость второго, тогда х+10 км/ч - скорость первого, тогда, время первого $$t_{1}=\frac{60}{x+10}$$ часов, $$t_{2}=\frac{60}{x}$$ часов - время второго. При этом второй ехал на 3 часа дольше, то есть : $$\frac{60}{x}-\frac{60}{x+10}=3|*\frac{x(x+10)}{3}\Leftrightarrow$$$$20x+200-20x=x^{2}+10x\Leftrightarrow$$$$x^{2}+10x-200=0\Rightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=-10\\x_{1}*x_{2}=-200 \end{matrix}\right.\Leftrightarrow$$$$\left[\begin{matrix}x_{1}=-20\\x_{2}=10\end{matrix}\right.$$. Скорость не может быть отрицательной, следовательно, скорость второго составляла 10 км/ч.
Аналоги к этому заданию:
Задание 1974
Два велосипедиста одновременно отправились в $$224$$ - километровый пробег. Первый ехал со скоростью, на $$2$$ км/ч большей, чем скорость второго, и прибыл к финишу на $$2$$ час раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Пусть x км/ч - скорость второго, тогда $$x+2$$ км/ч - скорость первого. Получим: $$\frac{224}{x}-\frac{222}{x+2}=2\leftrightarrow 112(x+2)-112x=1(x^2+2x)\leftrightarrow$$ $$\leftrightarrow 112x+224-112x=x^2+2x\leftrightarrow x^2+2x-224=0$$
Решаем по теореме Виета:
1) $$x_1+x_2=-2\to x_1=-16<0$$
2) $$x_1x_2=-224\to x_2=14$$ - ответ.