Задание 39
Задание 39
Через точку $$O$$ пересечения диагоналей параллелограмма $$ABCD$$ проведена прямая, пересекающая стороны $$AB$$ и $$CD$$ в точках $$P$$ и $$Q$$ соответственно. Докажите, что отрезки $$BP$$ и $$DQ$$ равны.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Аналоги к этому заданию:
Задание 846
Через точку $$O$$ пересечения диагоналей параллелограмма $$ABCD$$ проведена прямая, пересекающая стороны $$AB$$ и $$CD$$ в точках $$E$$ и $$F$$ соответственно. Докажите, что отрезки $$AE=CF$$.
Треугольники AOE и COF равны по стороне и двум прилежащим к ней углам: AO = CO, поскольку диагонали параллелограмма точкой пересечения делятся пополам, $$\angle AOE=\angle COF$$ как вертикальные, $$\angle OAE=\angle OCF$$ как накрест лежащие углы при пересечении параллельных прямых AB и CD секущей AC. Из равенства треугольников следует равенство их сходственных сторон: AE = CF. Что и требовалось доказать.
Задание 1326
Через точку $$O$$ пересечения диагоналей параллелограмма $$ABCD$$ проведена прямая, пересекающая стороны $$BC$$ и $$AD$$ в точках $$K$$ и $$M$$ соответственно. Докажите, что отрезки $$BK$$ и $$DM$$ равны.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 1605
Через точку $$O$$ пересечения диагоналей параллелограмма $$ABCD$$ проведена прямая, пересекающая стороны $$BC$$ и $$AD$$ в точках $$L$$ и $$G$$ соответственно. Докажите, что отрезки $$CL=AG$$.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!