Задание 252
Задание 252
В равнобедренной трапеции $$ABCD$$ с большим основанием $$AD$$ биссектриса угла $$A$$ пересекается с биссектрисой угла $$C$$ в точке $$F$$, а также пересекает сторону $$CD$$ в точке $$K$$. Известно, что угол $$AFC$$ равен $$150^{\circ}$$. Найдите $$FK$$, если $$CF=12\sqrt{3}$$.
Аналоги к этому заданию:
Задание 1914
В равнобедренной трапеции $$ABCD$$ с большим основанием $$AD$$ биссектриса угла $$A$$ пересекается с биссектрисой угла $$C$$ в точке $$F$$, а также пересекает сторону $$CD$$ в точке $$K$$. Известно, что прямые $$AB$$ и $$CF$$ параллельны. Найдите $$CF$$, если $$FK=4\sqrt{3}$$.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
- Пусть $$AF \cap BC=E$$. Так как ABCD – равнобедренная трапеция,$$\angle BAC+\angle BCD=180^{\circ}$$. Пусть $$\angle BAC=2\alpha\Rightarrow$$$$\angle BCD=180^{\circ}-2\alpha$$. Тогда $$\angle ECK=2\alpha$$, $$\angle CEK=\alpha$$ ($$\frac{\angle A}{2}$$ - как накрест лежащие)
- $$\angle AFC=\angle BAF=\alpha=\angle CFK$$ (накрест лежащие и вертикальные)
- $$\angle FCK=\frac{180^{\circ}-2\alpha}{2}=90^{\circ}-\alpha$$. Из треугольника CFK $$\angle CKF=180^{\circ}-(\alpha+90^{\circ}+\alpha)=90^{\circ}$$
- Из треугольника CKE: $$90^{\circ}+3\alpha=180^{\circ}\Rightarrow$$$$\alpha=30^{\circ}$$
- $$CF=\frac{FK}{\cos CFK}=$$$$\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}}=8$$
Задание 1077
В равнобедренной трапеции $$ABCD$$ с большим основанием $$AD$$ биссектриса угла $$A$$ пересекается с биссектрисой угла $$C$$ в точке $$F$$, а также пересекает сторону $$CD$$ в точке $$K$$. Известно, что угол $$AFC$$ равен $$150^{\circ}$$. Найдите $$FK$$, если $$CF=6\sqrt{3}$$.
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!