Skip to main content

Задание 200

Задание 200

Окружность с центром на стороне $$AC$$ треугольника $$ABC$$ проходит через вершину $$C$$ и касается прямой $$AB$$ в точке $$B$$. Найдите диаметр окружности, если $$AB=2$$, $$AC=8$$.

Ответ: 7,5

Аналоги к этому заданию:

Задание 3693

Окружность с центром на стороне $$AC$$ треугольника $$ABC$$ проходит через вершину $$C$$ и касается прямой $$AB$$ в точке $$B$$. Найдите диаметр окружности, если $$AB=15$$, $$AC=25$$.

Ответ: 16
Скрыть

1) Пусть О - центр окружности. М - точка пересечения $$AC$$ и окружности.

2) По свойству касательной и секущей: $$AM\cdot AC=AB^{2}$$

Пусть $$M=x$$, тогда $$AM=25-x$$.

Получим: $$(25-x)\cdot25=15^{2}$$ $$\div25$$ $$\Rightarrow$$

$$25-x=9$$ $$\Rightarrow$$ $$x=16=CM$$ - диаметр

Задание 906

Окружность с центром на стороне $$AC$$ треугольника $$ABC$$ проходит через вершину $$C$$ и касается прямой $$AB$$ в точке $$B$$. Найдите диаметр окружности, если $$AB=1$$, $$AC=5$$.

Ответ: 4,8