Задание 1794
Задание 1794
Решите неравенство: $$\frac{x^2}{3} \frac{3x + 3}{4}$$
Ответ: (-0,75;3)
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Аналоги к этому заданию:
Задание 4654
Решите неравенство: $$\frac{11x - 4}{5} \geq \frac{x^2}{2}$$
Ответ: $$[0,4; 4]$$
Скрыть
$$\frac{11x-4}{5}\geq\frac{x^{2}}{2}|*10\Leftrightarrow$$$$22x-8-5x^{2}\geq0|*(-1)\Leftrightarrow$$$$5x^{2}+8-22x\leq0$$
Найдем значения, при которых выражение $$5x^{2}+8-22x=0$$
$$D=484-160=324$$
$$x_{1}=\frac{22+18}{10}=4$$
$$x_{2}=\frac{22-18}{10}=0,4$$
Отметим полученные точки на координатной прямой и расставим знаки значений, которые принимает выражение $$5x^{2}+8-22x$$ на полученных промежутках:
Точки закращенные, так как неравенство нестрогое. Выберем отрезок, на котором выражени принимает отрицательные значения: $$[0,4; 4]$$
Задание 4657
Решите неравенство: $$\frac{x^2}{3} \ge \frac{3x + 3}{4}$$
Ответ: ($$-\infty$$; -0,75] $$\cup$$ [3; $$+\infty$$)
Скрыть
$$\frac{x^{2}}{3}\geq \frac{3x+3}{4}|*12\Leftrightarrow$$$$4x^{2}-9x-9\geq 0$$
Найдем значения х , при которых выражение $$4x^{2}-9x-9=0\Leftrightarrow$$$$4(x-3)(x+0,75)=0$$
$$D=81+144=225$$
$$x_{1}=\frac{9+15}{8}=3$$
$$x_{1}=\frac{9-15}{8}=-0,75$$
$$4(x-3)(x+0,75)\geq0$$
Отметим значения на координатной прямой, расставим знаки значений, которые принимает выражение $$4(x-3)(x+0,75)$$ на полученных промежутках:
Точки закращенные, так как неравенство нестрогое. Выберем промежутки, где значение выражение больше или равно 0: ($$-\infty$$; -0,75] $$\cup$$ [3; $$+\infty$$)

