Задание 1633
Задание 1633
Теорему косинусов можно записать в виде $$\cos \alpha = \frac{a^2 + b^2 - c^2}{2ab}$$, где $$a$$, $$b$$ и $$c$$ — стороны треугольника, а $$\alpha$$ — угол между сторонами $$a$$ и $$b$$. Пользуясь этой формулой, найдите величину $$\cos \alpha$$, если $$a = 5$$, $$b = 8$$ и $$c = 7$$.
Ответ: 0,5
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Аналоги к этому заданию:
Задание 1616
Теорему косинусов можно записать в виде $$\cos \alpha = \frac{a^2 + b^2 - c^2}{2ab}$$, где $$a$$, $$b$$ и $$c$$ — стороны треугольника, а $$\alpha$$ — угол между сторонами $$a$$ и $$b$$. Пользуясь этой формулой, найдите величину $$\cos \alpha$$, если $$a = 7$$, $$b = 10$$, $$c = 11$$.
Ответ: 0,2
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!