Skip to main content

Задание 1534

Задание 1534

Точка $$H$$ является основанием высоты $$BH$$, проведённой из вершины прямого угла $$B$$ прямоугольного треугольника $$ABC$$. Окружность с диаметром $$BH$$ пересекает стороны $$AB$$ и $$CB$$ в точках $$P$$ и $$K$$ соответственно. Найдите $$BH$$, если $$PK=11$$.

Ответ: 11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Аналоги к этому заданию:

Задание 3670

Точка $$H$$ является основанием высоты $$BH$$, проведённой из вершины прямого угла $$B$$ прямоугольного треугольника $$ABC$$. Окружность с диаметром $$BH$$ пересекает стороны $$AB$$ и $$CB$$ в точках $$P$$ и $$K$$ соответственно. Найдите $$PK$$, если $$BH=11$$.

Ответ:

Задание 3193

Точка $$H$$ является основанием высоты $$BH$$, проведённой из вершины прямого угла $$B$$ прямоугольного треугольника $$ABC$$. Окружность с диаметром $$BH$$ пересекает стороны $$AB$$ и $$CB$$ в точках $$P$$ и $$K$$ соответственно. Найдите $$PK$$, если $$BH=12$$.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Рассмотрим $$\Delta PBK$$: $$\angle B=90\Rightarrow$$ PK-диаметр описанной окружности $$\Rightarrow PK=BH=12$$

Задание 1551

Точка $$H$$ является основанием высоты $$BH$$, проведённой из вершины прямого угла $$B$$ прямоугольного треугольника $$ABC$$. Окружность с диаметром $$BH$$ пересекает стороны $$AB$$ и $$CB$$ в точках $$P$$ и $$K$$ соответственно. Найдите $$BH$$, если $$PK=13$$.

Ответ: 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 523

Точка $$H$$ является основанием высоты $$BH$$, проведённой из вершины прямого угла $$B$$ прямоугольного треугольника $$ABC$$. Окружность с диаметром $$BH$$ пересекает стороны $$AB$$ и $$CB$$ в точках $$P$$ и $$K$$ соответственно. Найдите $$BH$$, если $$PK=15$$.

Ответ: 15

Задание 542

Точка $$H$$ является основанием высоты $$BH$$, проведённой из вершины прямого угла $$B$$ прямоугольного треугольника $$ABC$$. Окружность с диаметром $$BH$$ пересекает стороны $$AB$$ и $$CB$$ в точках $$P$$ и $$K$$ соответственно. Найдите $$BH$$, если $$PK=12$$.

Ответ: 12