Задание 1484
Задание 1484
На средней линии трапеции $$ABCD$$ с основаниями $$AD$$ и $$BC$$ выбрали произвольную точку $$K$$. Докажите, что сумма площадей треугольников $$BKC$$ и $$AKD$$ равна половине площади трапеции.
Ответ: ч.т.д.
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!