Skip to main content

Задание 1159

Задание 1159

Углы при одном из оснований трапеции равны $$80^{\circ}$$ и $$10^{\circ}$$, а отрезки, соединяющие середины противоположных сторон трапеции, равны $$20$$ и $$17$$. Найдите основания трапеции.

Ответ: 37;3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Аналоги к этому заданию:

Задание 3625

Углы при одном из оснований трапеции равны $$85^{\circ}$$ и $$5^{\circ}$$, а отрезки, соединяющие середины противоположных сторон трапеции, равны $$11$$ и $$1$$. Найдите основания трапеции.

Ответ:

Задание 2318

Углы при одном из оснований трапеции равны $$18^{\circ}$$ и $$72^{\circ}$$ , а отрезки, соединяющие середины противоположных сторон трапеции, равны $$15$$ и $$4$$. Найдите основания трапеции.

Ответ: 9;11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 1168

Углы при одном из оснований трапеции равны $$53^{\circ}$$ и $$37^{\circ}$$, а отрезки, соединяющие середины противоположных сторон трапеции, равны $$6$$ и $$2$$. Найдите основания трапеции.

Ответ: 8;4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 143

Углы при одном из оснований трапеции равны $$58^\circ$$ и $$32^\circ$$, а отрезки, соединяющие середины противоположных сторон трапеции, равны $$6$$ и $$14$$. Найдите основания трапеции.

Ответ: 20; 8
Скрыть

Пусть $$ABCD$$ - трапеция с основаниями $$AD$$ и $$BC$$

Обозначим середины сторон: $$M$$ - середина $$AB$$, $$N$$ - середина $$CD$$, $$P$$ - середина $$BC$$ - меньшее основание, $$Q$$ - середина $$AD$$ - большее основание трапеции.

Отрезки, соединяющие середины противоположных сторон:

$$MN$$ - средняя линия: $$MN = \frac{AD + BC}{2}$$

(*) Если сумма углов при основании трапеции равна $$90^\circ$$, то длина отрезка, соединяющего середины оснований, равна полуразности длин оснований. $$PQ = \frac{|AD - BC|}{2}$$

Решаем систему:

$$AD + BC = 28$$

$$AD - BC = 12$$

Сложим уравнения:

$$(AD + BC) + (AD - BC) = 28 + 12$$

$$2AD = 40$$

$$AD = 20$$

Вычтем уравнения:

$$(AD + BC) - (AD - BC) = 28 - 12$$

$$2BC = 16$$

$$BC = 8$$

$$AD = 20$$, $$BC = 8$$

Кому интересно, доказательство утверждения (*).

Пусть $$AB \cap DC = F$$. Угол $$\angle F = 90^\circ$$.

$$BP || AQ \Rightarrow \angle FBP = \angle FAQ$$ (соответственные).

$$FP$$ - медиана из прямого угла треугольник $$BFC \Rightarrow \angle BFP = \angle FBP$$, аналогично: $$\angle AFQ = \angle FAQ$$. Тогда $$\angle BFP = \angle AFQ \Rightarrow F, P, Q$$ лежат на одной прямой.

По свойству медианы, опущенной на гипотенузу: $$FP = \frac{BC}{2}$$, $$FQ = \frac{AD}{2}$$. При этом $$PQ = FQ - FP = \frac{AD}{2} - \frac{BC}{2} = \frac{AD - BC}{2}$$

Задание 164

Углы при одном из оснований трапеции равны $$36^\circ$$ и $$54^\circ$$, а отрезки, соединяющие середины противоположных сторон трапеции, равны $$25$$ и $$11$$. Найдите основания трапеции.

Ответ: 36; 14
Скрыть

Пусть $$ABCD$$ - трапеция с основаниями $$AD$$ и $$BC$$

Обозначим середины сторон: $$M$$ - середина $$AB$$, $$N$$ - середина $$CD$$, $$P$$ - середина $$BC$$ - меньшее основание, $$Q$$ - середина $$AD$$ - большее основание трапеции.

Отрезки, соединяющие середины противоположных сторон:

$$MN$$ - средняя линия: $$MN = \frac{AD + BC}{2}$$

(*) Если сумма углов при основании трапеции равна $$90^\circ$$, то длина отрезка, соединяющего середины оснований, равна полуразности длин оснований. $$PQ = \frac{|AD - BC|}{2}$$

Решаем систему:

$$AD + BC = 50$$

$$AD - BC = 22$$

Сложим уравнения:

$$(AD + BC) + (AD - BC) = 50 + 22$$

$$2AD = 72$$

$$AD = 36$$

Вычтем уравнения:

$$(AD + BC) - (AD - BC) = 50 - 22$$

$$2BC = 28$$

$$BC = 14$$

$$AD = 36$$, $$BC = 14$$

Кому интересно, доказательство утверждения (*).

Пусть $$AB \cap DC = F$$. Угол $$\angle F = 90^\circ$$.

$$BP || AQ \Rightarrow \angle FBP = \angle FAQ$$ (соответственные).

$$FP$$ - медиана из прямого угла треугольник $$BFC \Rightarrow \angle BFP = \angle FBP$$, аналогично: $$\angle AFQ = \angle FAQ$$. Тогда $$\angle BFP = \angle AFQ \Rightarrow F, P, Q$$ лежат на одной прямой.

По свойству медианы, опущенной на гипотенузу: $$FP = \frac{BC}{2}$$, $$FQ = \frac{AD}{2}$$. При этом $$PQ = FQ - FP = \frac{AD}{2} - \frac{BC}{2} = \frac{AD - BC}{2}$$